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ABSTRACT. We describe an algorithmic solution for the computation of Galois groups which
employs relative invariants for pairs of groups H < G — multivariate polynomials whose stabilizer
in G is H. We then introduce two new methods for the construction of such invariants (Algorithms
4.7 and 4.13), and give a new construction (Equation 5) for the projective semi-linear group
PT'L(2,25) and its index two subgroup PGL(2, 25).

CONTENTS

1. Introduction

2. Preliminaries

2.1. Invariants

2.2. Fields & Galois Theory

3. Stauduhar’s Method

4. Generic Invariants

4.1. The Reynolds Operator

4.2. The Linear Algebra Method

4.3. The Molien Series

4.4. Computing a Basis

5. Special Invariants

5.1. Projective Geometry & Transformations
5.2. The Pair PGL(2,25) < PTL(2, 25)
5.3. Constructing an Invariant

6. Results & Future Work

6.1. Results
6.2. Future Work
References

Glossary

coO 00 O Tt N NN

10

12
13
13
16
17
19
19
20
21
21



RELATIVE INVARIANTS IN PERMUTATION GROUPS 2

1. INTRODUCTION

Determining the Galois group of a polynomial is an old problem. Currently, the best algorithmic
solution is an extension of R. P. Stauduhar’s method [12]. Stauduhar’s method begins with the
symmetric group on n letters, denoted S,,, and uses relative invariants (definition 2.5) to traverse the
lattice of subgroups down to the Galois group. C. Fieker and J. Kliiners [7] developed an algorithmic
approach to computing relative invariants of minimal degree for any pair of permutation groups,
resulting in a practical, degree independent algorithm.

Unfortunately, there are cases where the relative invariants produced by this generic approach
(generic meaning applicable to any pair of permutation groups) are difficult to evaluate, creating
a bottleneck in the algorithm. In these cases, we may hope to use the specific group structure to
inform the construction of a nicer invariant; invariants constructed for a specific pair of groups, or
a family of pairs sharing some common characteristic, are called special invariants. The collection
of special methods described by A.-S. Elsenhans in [5] effectively treats a sufficiently broad class of
pairs to make Stauduhar’s method an efficient and widely used algorithm.

However, there remain some pairs of groups for which none of the special methods described in
[5] apply, and one must resort to the generic method of Fieker and Kliners. One example is given
by the projective semi-linear group on F3; and its index two subgroup, the projective linear group
(see definitions 5.11 and 5.3 for details).

The goal of this report is to describe Stauduhar’s method for computing the Galois group of a
polynomial, and introduce two new generic algorithms for computing relative invariants (algorithms
4.7 and 4.13). Then we will turn our attention to the particularly challenging case PGL(2,25) «
PT'L(2,25) and construct a new special invariant (given in equation 5).

2. PRELIMINARIES

This report will study the action of finite groups on polynomial rings with the goal of under-
standing how polynomials invariant under this action can be constructed, and applied to problems
in Galois theory. To facilitate this discussion, we will begin by reviewing some background material,
and introducing notation that will be used throughout.

2.1. Invariants.

Definition 2.1. An algebra A over a field K is a set equipped with two binary operations, ad-
dition and multiplication, so that (A,+,-) is a ring, and (A, +) is a K-vector space with a scalar
multiplication satisfying k(a - b) = (ka) -b = a - (kb) for all k € K and a,b € A.

Notably, we have defined our algebras to be associative and unital. Some authors define an
algebra differently, and would call ours an associative algebra. If (A,+,-) is a commutative ring,
then we say that A is a commutative algebra. Unless otherwise mentioned, we will assume that our
algebras are commutative.

We will fix a field K of characteristic zero, and denote the set of polynomials in indeterminates
X1, , &, with coefficients from K by Klxi,---,x,], abbreviated K[X]. The set K[X] forms
a commutative K-algebra under the usual addition and multiplication of polynomials. Moreover,
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every polynomial in K[X] can be written uniquely as a sum of homogeneous polynomials (definition
6.1), so we can decompose the additive group of K[X] as the direct sum of homogeneous pieces

KIX] = D KX
d=0

where K[X]g is the subgroup containing all homogeneous polynomials of degree d (and the identity).
In addition to the decomposition of the additive group of K[X], we have

KIXiK[X]; ={f-g: f € K[X];, g € K[X];} C K[X]it;-

Each homogeneous piece of K[X] has a basis comprised of all monomials of degree d. We can count
the number of monomials of degree d in n indeterminates by imagining that we have d ‘powers’
to distribute across the n variables. If we represent the powers by *’s, we can assign exponents to
the indeterminates by placing n — 1 bars, which divide the d stars into n groups. For example, the
monomial z3x3 € K[x1, 2, 3] is specified by * * ||*. Therefore, the total number of monomials is
the same as the number of ways to place n — 1 bars into n — 1 + d spaces. In other words,

i K[ = (n:;if) _ (n—i—fﬂl—l)'

In particular, the dimension of each K[X]y is finite. We summarize these properties of K[X] with
the next definition.

Definition 2.2. An algebra A over a field K is said to be naturally graded if the additive group
admits the representation
A=A,

neN
and the homogeneous pieces satisfy A;4; ={a-a’ :a € A;, a’ € A;} C A;4;. If the dimension of
each homogeneous piece as a K-vector space is finite, we say A has finite type.

We now want to consider the action of a finite group G induced by a linear representation
p: G — GL,(K) (see definition 6.2 for details about linear representations). The homomorphism
p defines a G-action on the vector space V.= K" by o * v = p(g)v for vectors v € V and group
elements o € G. This induces an action on the dual space V* (definition 6.3) by o*l(v) = I(6c 7 *v)
for linear functionals [ € V*. We extend this action to polynomials f € K[X] by defining

ox* f(v) = flo~ ! xw).

Lemma 2.3. The G-action on K[X] induced by linear representation p : G — GL,(K) respects
addition, multiplication, and scalar multiplication.

Proof. Let o belong to G. For polynomials f,g € K[X] and a vector v € K", we have
g (f+9)(v)=(f+9)(c™ *v) = flo7 xv) +g(0™ xv) = (o % f + 0 g)(v).
Similarly, using - to denote polynomial multiplication,

ox(f-9)W)=(f-g)o7 xv) = fo™ xv) - glo™v) = (0% f - 7% g)(v).

Finally, if k € K is a scalar,

ox (kf)(w) = kf(o™" xv) = k(o * f(v)).
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An important example of a linear representation is the defining representation of a permutation
group, defined to be the homomorphism p : G — GL,(K) which maps each permutation o to
the matrix which sends the ith basis vector to the o(i)th basis vector. In essence, p is defined by
p(o)(e;) = ey(;)- When G is a permutation group of degree n, and p is the defining representation,
the induced action of G on K[X] is equivalent to

O*f(xla"' axn) = f(xcr(l)v"' axa(n))-

To see this, let v € K™ be the sum v = c1e; + - - - + ¢,€,, and observe that

ox f(v)=flo ™ xv)=f (Cleo-—l(l) 4+t cnerl(n)) .
It is clear that the o(m)-th basis vector will be mapped to e,,, so the sum is equivalent to

o ltxv= Co(1)€1 T+ + Co(n)€n.
Therefore, the action of o~ on vector v = (v, -+ ,v,) is o 1 *v = (Vo(1), """ s Vo(n))- Returning to
the action of o on the polynomial f we see that G acts on K[X] by permuting the indeterminates.
We will focus primarily on this representation for the rest of the report.

Given a group G and a linear representation p, we are interested in polynomials f in K[X] which
are invariant under the G-action induced by p. That is, polynomials f € K[X] such that

oxf=f foralloe@G.

We denote the set of polynomials invariant under this action by K[X]“. Although standard, we
admit that this notation is imprecise, since G may have different representations yielding different
sets of invariants. However, the context should make it clear what representation is being considered.

Lemma 2.4. The set of invariants K[X] forms a subalgebra of K[X]. Moreover, K[X|¢ inherits
the gradation of K[X] and forms a naturally graded vector space of finite type.

Proof. Certainly scalars are invariant, in particular, 0 and 1. If f and g are G-invariant then, by
linearity, f + g and —f are also invariant. Similarly, the G-action satisfies o (fg) = (o * f)(0 * g).
Hence K[X]“ is closed under both operations and the taking of additive inverses, and contains
the additive and multiplicative identities. Finally, by virtue of scalars being invariant and K[X]¢
being closed under products, a valid scalar multiplication is inherited. Therefore, K[X]¢ forms a
subalgebra. O

As mentioned in the introduction, this report will focus on relative invariants — a type of invariant
which arises when we consider a subgroup H < G. If f is a polynomial in K[X] such that o f # f
for all o € G\ H, then we say f is a G-relative H-invariant, or simply, a relative invariant.

Definition 2.5. If f € K[X] is a polynomial whose stabilizer in G is H, we say that f is a G-relative
H-invariant.

Constructing relative invariants for pairs of permutation groups (with the action given by the
defining representation) will be the central focus of this report, but to understand their significance
in Stauduhar’s method, we will need to discuss some Galois theory first.
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2.2. Fields & Galois Theory. If L is a field, and K C L is a field under the same operations,
we say L is an extension field of K, denoted L/K. One way of forming field extensions is to adjoin
elements uy, -+ ,ux € L to the subfield K by defining the generated field extension K (ug,--- ,uk)
to be the smallest subfield of L containing K and all uq,--- , ug.

Given a field extension L/K, we may regard L as a K-vector space (since L is an Abelian group
under addition and has a valid K multiplication). From this perspective, we define the index, or
degree, of the extension to be [L : K] = dimg L, the dimension of L as a K-vector space. If the
index of the extension is finite, we say L/K is a finite extension.

The automorphisms of L form a group under composition, which we denote Aut(L) — see glossary

entry 6.5 for the definition of a field automorphism. We define the automorphism group of the
extension L/K to be the set of automorphisms of L which leave K fixed. That is

Aut(L/K) ={a € Aut(L) : a(k) =k for all k € K}.
We call the set of elements which are fixed by every automorphism in Aut(L/K) the fixed field of
Aut(L/K). Note that the fixed field contains K but is not necessarily equal to K.

A special type of extension is obtained by adjoining the roots r1,--- ,r, € L of a polynomial
p € K[z] to construct N = K(rq,- -+ ,7,), which we call the splitting field of p over K. Regarding
N as a K-vector space it is clear that {1,7, -+ ,7,} forms a spanning set for N. Therefore, the
automorphisms in Aut(N/K) are determined by their action on the roots of p.

We call polynomial of degree n separable if it has n distinct roots in its splitting field. For
example, take g(z) = 2P — z € Fp[z]. The multiplicative group of F,, has order p — 1, so 2z = z for
every x € IF,. Hence, ¢ has p distinct roots in F,,.

Extensions of the form N/K where N is the splitting field of a separable polynomial in K[z] are
called Galois extensions, and they have a number of equivalent properties.

Theorem 2.6. If N/K is finite, then the following statements are equivalent to N/K is Galois.

(1) N is the splitting field of a separable polynomial over K,
(2) The fized field of Aut(N/K) is K,
(3) |[Aw(N/K)| =[N : K].

Proof. See theorem 16.6.4 in Artin’s “Algebra” [1] O
If N/K is a Galois extension, we call Aut(/N/K) the Galois group of the field extension, and we
use the notation Gal(N/K).

Lemma 2.7. Let p = apa™ + -+ + a1z + ag € K[X] be a separable polynomial with splitting field
N over K. Suppose R C N is the set of roots of p, and define ¢ : Gal(N/K) — Sym(R) by
o(y)(r) =~(r). Then ¢ is an injective group homomorphism.

Proof. First, we will show that the stated co-domain is correct. Observe that for all v € Gal(N/K)

v(p(z)) = y(anz™ + -+ a1x + ag) = a,y()" + - + a1y(x) + ao = p(y(z)).

Applying this property to a root r € R, we have 0 = v(0) = v(p(r)) = p(y(r)). Therefore, v maps
roots to roots. Being an automorphism of N, we know + is injective on the finite subset R C N, so
v is a bijection.
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Now suppose ¢(y) = ¢(«) for some v, € Gal(N/K). Then ~(r) = «a(r) for all » € R. Since
the automorphism in Gal(N/K) are determined by their action on the roots, we must have v = a.
Finally, a direct computation shows that ¢ is a group homomorphism:

P(yea)(r) =v(a(r)) = (1) (e(a)(r)) = (¢(7)d(a))(r)-
O

Given the natural correspondence between Sym(R) and S,, (obtained by identifying each r; with
its index %), we may regard ¢ as a map from Gal(N/K) into S,. Since ¢ is an injective group
homomorphism, the image of Gal(N/K) under ¢ is a subgroup of S,, isomorphic to Gal(N/K),
which we define to be the Galois group of the polynomial p, denoted Gal(p).

Definition 2.8. The Galois group of a separable polynomial p € K[z] with splitting field N over
K is the image of Gal(N/K) under ¢ defined in lemma 2.7.

We can now construct the defining representation of Gal(p) and induce an action on the ring of
polynomials K[z, ,2,] by
o * f(xlv' o ,$n) = f (x0(1)7 e 71.0(n))

for all o € Gal(p) and f € K[z, ,x,]. The content of the next lemma relates the behavior of
the automorphisms of Gal(N/K) with the action of Gal(p) on K[z, - ,x,].

Lemma 2.9. Let p € K[z] be a polynomial with splitting field N/K and roots r1,--- ,ry. Let f be
a polynomial in K[x1, - ,x,], and let v belong to Gal(N/K). Using ¢ to denote the representation
from lemma 2.7,

Y (reee ) = 6() % f(re, - ).

Proof. Suppose without loss of generality that f is the sum of monomials f = Za(mil coplin),
Then, if we write 0 = ¢(7y), a direct computation shows that

Y(flre,o o) =Y aly(r)™ - y(ra)™)
=Y a (”?(1) ' "Tfr"(n))

= [ (To(i)s > To(n))

— o f(rn ).
Hence, the action of Gal(p) on polynomials f € K[X] evaluated at the roots of p is equivalent to
the action of Gal(N/K) on the field element f(rq,--- 7). O

3. STAUDUHAR’S METHOD

In this section, we will introduce Stauduhar’s method — a widely used algorithm for computing
the Galois group of a polynomial, introduced by R. P. Stauduhar in [12] — and discuss the central
ideas in a more general setting. If p € K[x] is a separable polynomial over an infinite field K and
we know Gal(p) < G (for example take G = S,,), we can determine whether the Galois group is
contained in some proper subgroup H < G by constructing a relative invariant and applying the
next proposition.
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Proposition 3.1. Let p € K|[z] be a separable polynomial with roots ry,--- 1, in its splitting field
N. Let H < G be subgroups of S, with G containing Gal(p), and suppose f € K[x1, -+ ,2n] i a
G-relative H-invariant such that

ox f(ri, - ,rn) # flr1, - ,rn) forall o€ G\ H. (1)
Then the Galois group Gal(p) is contained in cHo =t if and only if o f(r1,--- , 1) lies in K.

Proof. Let A= o * f(ry, -+ ,7,) € N. If Gal(p) is a subgroup of c Ho !, then for an automorphism
v € Gal(N/K), we have ¢(v) = cho~! for some h € H. Since h stabilizes f, this implies

d(Y) % (o % f(r1,-- ,rp)) = (cho o) x f(ri, - ,rp) =0 % f(r1,--- ,70).

Given the correspondence established in lemma 2.9, this is equivalent to v(A) = A. Since N/K is a
Galois extension, the fixed field of Gal(N/K) is K, and () = A implies A € K.

Conversely, suppose A = o x f(ry,-+- ,r,) lies in K. Then, for all v € Gal(N/K), we have
v(\) = A, which implies ¢ () * (¢ * f(r1, -+ ,rn)) = o * f(r1, -+ ,7,) by lemma 2.9. Letting o~ *
act on both sides of the equation, we have

o7 (@) % (0 fre, oo ya))) = (07 6(N)0) % f(re, -+ 1) = [, 7).

By assumption (1), this implies 0~ *¢(y)o € H. Therefore, ¢(y) € o Ho~ !, and Gal(p) is a subgroup
of cHo™! as claimed. O

Hypothesis (1) appears quite strong, but in fact, it can be achieved by applying a Tschirnhausen
transformation to the polynomial.

Lemma 3.2. If K is an infinite field, then in the situation of proposition 3.1 there exist co,- -+ ,Cpn—1

in K such that, for B; = Z;:_OI cjrg we have B; # B; fori # j, and ox f(B1,---,Bn) # f(Br, -+, Bn)
for allo € G\ H. In fact, the ¢; may be chosen from any subset of K with cardinality larger than

deg(f) - (‘5™) + (3)-
Proof. See Lemma 5.2.2 in Derksen and Kemper’s “Computational Invariant Theory” [3]. U

The above result guarantees that we can always construct a separable polynomial with the same
Galois group as p whose roots do satisfy (1). In particular, with 8y, -, 5, as in lemma 3.2, we
can form the product

P H(a: _ ) € Kla].

This amounts to a transformation of p which does not change the Galois group (see [3, Section 5.2]
for details). In light of these results, an algorithm for computing the Galois group of a separable
polynomial is now clear.

Algorithm 3.3 (Stauduhar’s Method). First, compute the subgroup lattice of S,,. Then, beginning
with G = S,,, select a maximal proper subgroup H < G and construct a G-relative H-invariant.
Apply proposition 3.1 to traverse the subgroup lattice until a group G < S,, is reached such that
Gal(p) < G but Gal(p) is not contained in any maximal subgroup of G, then Gal(p) = G.
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It is clear that G-relative H-invariants are central to Stauduhar’s method, but good invariants
are not always easy to construct. For practical applications, we would like to find invariants which
minimize the computational cost — determined by the degree of the invariant and the number of
multiplications required for evaluation.

We will investigate the question of constructing invariants in the next two sections, with a
particular focus on pairs of groups H < G where H is maximal (proper) in G, for these are the
pairs which naturally arise in Stauduhar’s method.

4. GENERIC INVARIANTS

We will begin this section with a constructive proof for the existence of relative invariants for any
pair of permutation groups. The analysis which follows motivates the study of alternative methods.

Lemma 4.1. Let H < G be permutation groups of degree n. There exists a G-relative H-invariant.

Proof. For any pair of permutation groups, we can construct a standard example of a relative

invariant, namely
n—1
f= Z o * (H xi) .
i=1

oc€EH
The action of permutation in H simply permutes the order of the sum, leaving f fixed. The action
of m € G\ H moves the sum onto the left coset mH, i.e.

n—1
Tk f = g o * Hxi .
ocemH i=1

The element 7 € 7H maps the monomial 2} --- 2"~} to 7 % 2} --- 2~} which does not appear in

the original sum. Hence, f is a G-relative H-invariant. U

Lemma 4.1 demonstrates that relative invariants exist for every pair of permutation groups,
and that we know how to construct them. The invariant which appears in the proof however, is
expensive; assuming the powers of each x; are stored, evaluation of the invariant requires |H|(n —2)
multiplications. Being a proper subgroup of S,,, the order of H is bounded above by n!/2, meaning
the complexity of this invariant is, at worst, factorial in the degree of the polynomial.

This example motivates the development of generic invariants, or generic methods, which produce
a relative invariant for any pair of permutation groups, while trying to minimize the computational
cost. One commonly used generic invariant is the method of Fieker and Kliiners [7], which produces
invariants of minimal degree. In this section, we will introduce two new methods for constructing
relative invariants of minimal degree. Our methods have the advantage that they are formulated
in terms of matrix operations.

4.1. The Reynolds Operator.

Definition 4.2. Let G be a finite group, and K a field whose characteristic does not divide the
order of G. Given a linear representation p : G — GL, (K), the Reynolds operator is the map

Re:K[X] > K[X], for—> oxf
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The primary application of the Reynolds operator is the construction of invariants (not relative
invariants); it is easy to see that the action an element in G simply permutes the sum, leaving R (f)
fixed. In this section, we will repurpose the Reynolds operator for the computation of relative
invariants, but first we will examine R more closely. In particular, we observe the following.

Lemma 4.3.

(1) The Reynolds operator is graded and K -linear.
(2) The Reynolds operator is a projection.

Proof. The fact that R is graded, meaning it does not change the degree of its argument, is clear
from the fact that the group action does not change the degree of polynomials it acts on. The
linearity of R¢ follows immediately from the fact that the group action is linear.

If f belongs to K[X], then g = Rg(f) is G-invariant. Applying R¢ to g, we see that the action
of 0 € G leaves g fixed, so we sum over |G| copies of g. Therefore, after dividing by |G|, we get
Ra(g) = g. Hence, the Reynolds operator is idempotent. O

Since K[X]¢ is contained in K[X]* (polynomials invariant under G must also be invariant under
subgroup H), the fact that R¢ is idempotent implies that R¢ is surjective. This is an extremely
useful fact, and suggests an algorithm for computing K[X]¢ which we will develop in subsection
4.4. For now, we want to extend the Reynolds operator by defining the relative Reynolds operator
for pairs of groups H < G.

Definition 4.4. Let G be a finite group with subgroup H, and let K be a field whose characteristic
does not divide the index of H in G. Given a linear representation p : G — GL,, (K), the relative
Reynolds operator is the map

1
Ra/u : K[X]? — K[X]%, — * f.
G/H [ ] — [ ] f'_> [G : H] aH;/HU f

Lemma 4.5.

(1) The relative Reynolds operator is independent of the choice of coset representatives.
(2) The Reynolds operator is graded and K -linear.
(3) The Reynolds operator is a projection.

Proof. The proof of properties 2 and 3 is identical to the proof given for the Reynolds operator in
lemma 4.3. For this reason, we will prove only the first claim. Let 7 belong to the left coset o H.
We can write m = oh for some h € H, and therefore 7w * f = o * (h* f). Since f is stabilized by
he H, wehave mx f =0 % f. (]

Again, since R,y is a projection and K[X]¢ C K[X]H, the relative Reynolds operator is
surjective. Furthermore, the image and kernel of R,y have trivial intersection — suppose f in
K[X]" belongs to K[X]%, then Rg/u(f) = f. Unless f is zero, then f is not in the kernel of
Ra JH- As a consequence, we obtain the vector space decomposition

K[X]" =kerRg/pm ® K[X]°. 2)

This observation leads to the following new result.
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Proposition 4.6. Let p: G — GL,(K) be a linear representation of finite group G, and let H be
a mazimal (proper) subgroup of G. If f is a non-zero element in the kernel of Rg p, then f is a
G-relative H -invariant.

Proof. The domain of R¢,y is K[X]", so H is certainly a subgroup of Stab¢(f). Since the kernel
and image of Rg/pg,q have trivial intersection and Rg, g is surjective, f cannot be G invariant,

thus the stabilizer of f must be a proper subgroup of G. Since H is maximal in G, we conclude
Stabg(f) = H. O

This result gives us a way to compute every relative invariant for the pair H < G. To be
specific, by finding a basis for the kernel of R/ 4, We can obtain every relative invariant as a
linear combination of the basis vectors and elements from K[X]“. However, K[X]¥ is infinite
dimensional; to compute the kernel of Rg,p, we will restrict Rg/y to the finite dimensional
homogeneous piece K[X]4:

Ra/ma: K[X]g - K[X]g, f=Rau(f)

Then, given a basis for K[X]¥, we can form the matrix of Rg /i,q and compute the kernel of
R/ w,qa by solving a system of linear equations over K. We will discuss an algorithm for computing
such a basis in subsection 4.4, but for now we will proceed, taking this for granted.

Before turning these observations into an algorithm, there is one more question that needs to be
addressed, namely, how do we choose a degree d for this calculation? Certainly we want to choose
d so that the kernel is non-trivial, and we would like to minimize d to make our relative invariant
as efficient as possible. In subsection 4.3 we will introduce the Hilbert series, and Molien’s formula
for calculating the Hilbert series of an invariant algebra. These tools will allow us to choose the
smallest d possible. For now, we will take these for granted and describe our first new algorithm
for computing relative invariants.

Algorithm 4.7 (Method 1). To compute a relative invariant from a basis for K[X]¥, construct
the matrix of R, p,q and compute the kernel by solving a system of linear equations over K. Any
non-zero element in the kernel is a relative invariant.

4.2. The Linear Algebra Method.

Definition 4.8. Let G//H denote a set of left coset representatives of G/H, and let S = (G//H)\
{e} so that S, when combined with H, generates G. We define a map from K[X] to the |S|-fold
direct sum of K[X] by

5]

w:K[X]H%EDK[X], (0% f = foes. (3)

Lemma 4.9.

(1) The map ¢ is K-linear.
(2) The kernel of ¢ is K[X]%.

Proof. A direct computation shows that for f,g € K[X]% and \ € K,
1/1(f+9) = (U*f+a*g_f_g)UES = (G*f_f)068+(a*g_g)065:¢(f)+w(g)a
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YAf) = Mo f) = Af)oes = Ao * [ = floes = Mp(f).
If (f) =0then ox f = f for all 0 € S. Since f is also invariant under H, and S together with H
generates GG, f must be G-invariant. The converse is clear — if f is G-invariant then o x f — f =0
for all 0 € S C G — so we conclude ¥(f) = 0 if and only if f is G-invariant. O

This result implies another algorithm for computing a basis for K[X ]g; for details, we refer
readers to section 3.1 in Derksen and Kemper’s “Computational Invariant Theory” [3]. The next
new result demonstrates the utility of ¢ as a tool for computing relative invariants.

Proposition 4.10. Let p: G — GL,,(K) be a linear representation of finite group G, and let H be
a mazimal proper subgroup of G. Then f € K[X|" is a relative invariant if and only if 1 (f) # 0,
where v is the map defined in equation (3).

Proof. If f is a relative invariant, then by definition, its G-stabilizer is H. Therefore, the action of
o € S will not leave f fixed, meaning o * f — f # 0. In essence, ¥ (f) is not zero in any component.

If ¢(f) is non-zero in any component, then f is not G-invariant. Of course, H is contained in
the stabilizer, but there are no groups between H and G, so we must have Stabg(f) = H. That is,
f is a relative invariant. O

Lemma 4.11. If B is a basis for K[X]¥, then ¢(B) is a spanning set for (K [X]H).

Proof. This is an immediate consequence of the fact that ¢ is a linear transformation. O

Corollary 4.12. If there is a relative invariant of degree d for the pair H < G, then there will be
some element in the basis B which are not mapped to zero by 1.

Proof. If there is a relative invariant in K[X]¥, then the image of K[X]4 will not equal {0}. Since
¥ (B) spans the image, this implies there is a non-zero element in ¢ (B), and therefore, a relative
invariant in B. O

These insights give rise to a new algorithm for computing relative invariants which we describe
now.

Algorithm 4.13 (Method 2). To compute a relative invariant from a basis for K[X]4, apply 1,
the map defined by (3), to each basis vector. Basis vectors which are not mapped to zero are
relative invariants.

Corollary 4.12 guarantees that, if there exists a relative invariant of degree d for the pair H < G,
then the above algorithm will produce a relative invariant.

4.3. The Molien Series. Both of our methods rely on knowledge of the minimal degree of a
relative invariant. In this section we will develop the tools to extract this information from our
knowledge of the groups. We know

K[X]} = ker R m,a ® K[X]¢C1;7

which implies
dim (ker R p,4) = dim K [X]¥ — dim K[X]G.
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Therefore, we need to determine the smallest degree d for which there are more linearly independent
H-invariants than linearly independent G-invariants. Fortunately, we can answer this question by
computing the Hilbert series of K[X]“ and K[X]* with the help of Molien’s formula.

Definition 4.14. For a naturally graded algebra of finite type M, the Hilbert series of M is the
formal power series

H(M,t) = i dim (M)t
d=0

The Hilbert series encodes all the information about the dimensions of each homogeneous com-
ponent of M. It is not obvious from the definition, but as Theodor Molien showed, there is a nice
formula for computing the Hilbert series of an invariant algebra directly from our knowledge of the
group and its representation.

Proposition 4.15 (Molien’s Formula). For a linear representation p : G — GL,(K) of a finite
group G, the Hilbert series of the invariant algebra is given by

1 1
HIEWXI®0 = 51 2 Sl — ooy

Proof. See Theorem 11.16 in Neusel’s “Invariant Theory” [10]. O

Using this formula, we can easily obtain the Hilbert series of K[X]“ and K[X]# and take the
Taylor series about zero to compute as many coefficients as needed. Comparing these coefficients
will allow us to determine the minimal degree of a relative invariant. In particular, we can compute

H(ker Rgm,t) = H(K[X]|",t) — H(K[X] ).

By (2), the first degree with a non-zero coefficient in the Hilbert series of the kernel is the minimal
degree of a relative invariant for the pair H < G.

4.4. Computing a Basis. Both of our methods rely on knowledge of a basis for a homogeneous
piece of K[X]. In this section we will discuss a practical and widely known [3] approach to
computing K[X]#. First, we observe the following.

Proposition 4.16. If B is a basis for K[X]¥, then Re/m,4(B) is a spanning set for K[X]§.
Proof. This is an immediate consequence of the fact that Rq /g is linear. O

By taking H to be the trivial group and recognizing that Rg /.y = Rq, we see that applying
R.a to a basis for K[X] will produce a spanning set for K[X]§. However, the dimension of K[X]4
could be very large — as we discussed in the introduction, the dimension of K[X]4 is ("+j_1).
Moreover, the Reynolds operator requires us to compute the action of |G| group elements on every
basis vector. This can become quite expensive when n (the degree of the polynomial whose Galois
group we are interested in) is large.

To address this issue, we have an alternative approach to computing the relative Reynolds oper-
ator for a pair of finite groups H < G. The key observation is that, by forming a chain of groups
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H=W <.-- <W, = (G, we can compute the relative Reynolds operator as the composition
Ra/u = Rw,yw,_, © o Rw,,w,. This has the advantage that each function
1
RWi+1/W7L K[X]W7 _>K[X]WH—17 f’_>7 Z O*f
[Wi+1 . WA I
cHeEW,; 11 /W;

requires the action of only [W;y; : W;] group elements. Therefore, the total number of actions

required is
r—1

Z[Wi""l : Wz]
i=1
In most cases, this is much smaller than the number of actions required to compute in the standard

way:
r—1

H[Wi+1 : Wl] = [G : H}

i=1
Moreover, if at each step we take the spanning set produced by applying Ry, /w,_, to a basis of
K[X]"i-1 and refine it to a basis for K[X]"¢, then we need to apply Rw,../w, to only dim KXW
elements, as opposed to all dim K[X]# elements which form a basis for K[X]7
this well-known [3] procedure with the next algorithm.

. We summarize

Algorithm 4.17. To compute a basis for K[X]§ from a basis of K[X]¥, first form a chain of
groups H = Wy < ... < W, = G. Then, apply Rw,,w, to each element in the basis and refine
the resulting spanning set to a basis for K[X]?. Repeat r — 1 times until a basis for K[X]§ is

obtained.

5. SPECIAL INVARIANTS

In this section, we will focus our attention on a specific pair of groups which is particularly
difficult to treat with existing methods, namely, the projective semi-linear group on the projective
line over Fy5, and its index two subgroup, the projective linear group. The methods outlined in
[5] are not applicable to this particular pair, and one must use a generic invariant requiring 14735
multiplications — the most of any pair tested in [5]. Our goal is to study these groups and construct
a special invariant.

5.1. Projective Geometry & Transformations.

Definition 5.1. Given a vector space V over a field K, the projective space P(V) is the set of one
dimensional subspaces of V. If dim V' = n, we say P(V') has projective dimension pdimP(V) = n—1.

As in the Euclidean case, we call a projective space of projective dimension 0 a projective point,
and a projective space of projective dimension 1 a projective line. If we take V = K2, then the
projective line P(V') is the set of lines through the origin, each of which is a projective point in this
space. All but one of these subspaces intersects the horizontal line zo = 1 at exactly 1 point. In
particular, a projective point spanned by (z, 1) intersects o = 1 at z on the horizontal axis. In this
way, we can uniquely identify (almost) all the projective points in P(V') with an element in K.

But what about the line spanned by (1,0)? This subspace does not intersect x2 = 1 at any point,
but as a projective point approaches the line spanned by (1,0), the point of intersection with xy = 1
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becomes arbitrarily large. In this way, the line spanned by (1,0) is playing the role of infinity in
the projective line. We will make this more precise with the next definition.

Definition 5.2. For a field K, we define the projectively extended line K to be the set K U {oo}.
The projectively extended line is in 1-1 correspondence with the projective line P(K?) with the
bijection given by span(z,1) — z, and span(0,1) — oo.

This correspondence allows us to identify projective points with elements in the projectively
extended line which we will do frequently, particularly in the next two subsections.

Definition 5.3. An automorphism f : V — V induces a bijection of P(V') called a homography by
mapping subspaces to their image. The group of homographies induced by the linear group GL(V)
is called the projective linear group, denoted PGL(V'). When V = [y, the notation PGL(n, q) is
used.

Lemma 5.4. Given two automorphisms f:V — V and g : V — V, the homographies induced by
f and g are equivalent if and only if there is some non-zero scalar A € K such that f = Ag.

Proof. See proposition 3.2.1 in Gruenberg and Weir’s “Linear Geometry” [9]. O

As a result, we see that PGL(V) is isomorphic to the the linear group GL(V) modulo its center.
Unlike their linear counterparts, which are determined by their action on n distinct vectors, the
homographies in PGL(V') are uniquely determined by their action on n+1 distinct projective points,
or to be more specific, their action on a projective frame.

Definition 5.5. Let P(V) have projective dimension n — 1. A projective frame in P(V) is an
(n + 1)-tuple of distinct projective points.

Lemma 5.6. Let P(V) have projective dimensionn—1. Given any two projective frames (A;)1<i<n+

and (B;)i<i<nt1 tn P(V), there is a unique homography h : P(V) — P(V) so that h(A;) f
1<i<n+1.
Proof. See lemma 5.5.4 in Gallier’s “Geometric Methods and Applications” [8]. O

We can extend the projective linear group by considering the permutations induced by semi-
linear transformations.

Definition 5.7. We say a bijection f : V' — V is a semi-linear transformation with respect to
a € Aut(K) if

(1) flu+v)=f(u)+ f(v) for all u,v €V,
(2) f(w)=a(\)f(v) forallv eV and A € K.

Definition 5.8. The group of semi-linear transformations of V is called the semi-linear group,
denoted I'L(V).

An important example can be constructed from an automorphism of the ground field K by
applying the automorphism to the coordinates of a vector. More generally, we have the following.
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Lemma 5.9. If we fiz a basis B for V, then we can define an injective group homomorphism

¥ Aut(K) — TL(V) by
P(a) (Z cbb> = Z a(cp)b.

beB beB

Proof. First we will verify that the stated co-domain is correct. Let u,v € V and A € K; a direct
computation shows that 1 («) is indeed semi-linear with respect to «:

(o) (u+v) = (Z(cb + d@b) => ale+d)b=Y_alc)b+ aldy)b=(a)(u) + ¥(e)(v),

beB beB beB

() (W) = ¢Y(a) (Z(/\cb)b> = Za(/\)oz(cb)b = a(MN)Y(a) (Z cbb> .

beB beB beB
Now we will verify that v is a group homomorphism:

o) (Z cbb> = 3" a(y(e)h = v(a) (Z w(cwb) — (b(a) 0 ¥()) (Z cbb> .

beB beB beB beB
Finally, to show % is injective, suppose 1(a) = 1(). Then,

() <Z cbb> =(v) (Z cbb> = Z(a(cb) —7(cp))b=0.

beB beB beB

The elements of B are linearly independent, so this implies each coefficient is zero, meaning a(cp) =
~(cp) for all b € B. Of course, the coordinates ¢, could be any elements in K, so a = 7. O

This result demonstrates that Aut(K) is isomorphic to a subgroup of I'L(V'). If we take B to be
the standard basis for V', then ¢(«) is equivalent to applying o component wise.

Lemma 5.10. If f : V — V is a semi-linear map, then W — f(W) defines a homography of P(V').
Proof. See section 3.5 of Gruenberg and Weir’s “Linear Geometry” [9]. O

Combining lemmas 5.9 and 5.10, we see that the automorphisms of K permute the projective
space P(V) by W +— ¢(a)(W). The homographies induced by Aut(K) form a subgroup of the
symmetric group on P(V) which we will identify with Aut(K) for the rest of the report.
Definition 5.11. The projective semi-linear group is the product

PIL(V) = PGL(V) Aut(K) = {ga : g € PGL(V), « € Aut(k)}.
When V' = Fy, the notation PI'L(n, q) is used.

Proposition 5.12. The projective semi-linear group is the semi-direct product of normal subgroup

PGL(V) by Aut(K). That is PTL(V) = PGL(V) x Aut(K).

Proof. We will begin by showing that N := PGL(V) is normal in PT'L(V'). Consider the conjugate
oNo~! for a permutation ¢ induced by the semi-linear map obtained by applying automorphism
a € Aut(K) component wise. An element ono~! € o No~! permutes the projective space by

W — {ono  (v) :v e W}
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where in this context, ono ! is a composition of semi-linear maps. Therefore, it suffices to show

that ono~! is linear, and therefore, the permutations in c No~! belong to N. Let A € K andv € V
and observe that

(one™ (W) = on(a™' (Vo' (v) = (' (Nne(v)) = Aono(v).

Hence cNo~! C N. Of course, the conjugation is an automorphism of PT'L(V), so [cNo~!| = |N|
and therefore, cNo~! = N.

Now we will show that N N Aut(K) is trivial. If ¢ € PTL(V) lies in the intersection, then the
map which induces o is simultaneously semi-linear with respect to o € Aut(K), and linear. This
implies that « is the trivial automorphism, and therefore, ¢ is the identity permutation.

Finally, we will show that every element o € PT'L(V) can be written uniquely as the product
o = na for some n € N and « € Aut(K). By definition every element can be constructed this way,
so it only remains to show uniqueness. If o = na = n’a’ for some n,n’ € N and «, o’ € Aut(K),
then n = n’a’a~!. For this to be true, n’aa™' must be linear, and therefore, aa™! must be the
trivial automorphism. In other words o’ = a. Then, returning to na = n’a, we cancel a on both

sides and obtain n = n’. O
For more information about the semi-direct product, see glossary entry 6.4.

5.2. The Pair PGL(2,25) <«PT'L(2,25). In this subsection, we want to study the particular pair
PGL(2,25) <« PTL(2,25). We regard these group as permutations of the projective space P(IF%;),
which has 26 elements.

Lemma 5.6 tells us that the action of PGL(2,25) on P(F%;) is sharply 3-transitive, meaning for
all 3-tuples (A, B,C), (D, E, F) of projective points, there is a unique permutation o in PGL(2, 25)
so that (0(A4),0(B),0(C)) = (D, E, F).

With this information we can determine the order of PGL(2,25) by counting the number of
distinct projective frames in P(F3;). There are 26 elements in P(F3;), so we have 15600 = 26 - 25 - 24
projective frames, meaning | PGL(2, 25)| = 15600.

Now we will turn our attention to Aut(Fas).

Lemma 5.13. The automorphisms of Fk fiz the prime subfield IF,,.
Proof. The prime subfield I, is generated by 1, and every field automorphism must send 1 to 1. O

Hence, we see that Aut(Fas) = Aut(Fa5/F5).
Lemma 5.14. F,. is the splitting field of f(x) = 2P — x over F,.

Proof. The multiplicative group of F,» has order p* — 1, and therefore by Lagrange, 2P =1 =1 for
all z # 0 € Fy». Hence, every element of F,« is a root of the polynomial f. The degree of the
polynomial is the order of IF,x, so the elements of the field are exactly the roots of f. O

The proof also demonstrates that f has no repeated roots, and therefore is separable. Taking
these facts together, we conclude that [F,» /IF,, is a Galois extension.

Definition 5.15. For a finite field IF,x, the Frobenius automorphism is the map ¢ : F,x — Fpx
defined by p(z) = «P.
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Lemma 5.16. The degree of the extension Fx /Fy is k.

Proof. There are only p coefficients in I}, to choose from, so F,x must have k basis vectors in order
to generate p¥ distinct elements. O

Lemma 5.17. The multiplicative group of a finite field is cyclic.

Proof. See theorem 6.5.10 in Beachy and Blair’s “Abstract Algebra” [2]. O

Lemma 5.18. The automorphism group Aut(F,«/F,) is cyclic of order k and generated by the
Frobenius automorphism.

Proof. Since F,» is a Galois extension of F,,, we know | Aut(F,«/F,)| = [F
suffices to show that the Frobenius automorphism has order k.

o 1 Fp] = k. Hence, it

The multiplicative group of F,« is cyclic of order p*—1, so there is some a € F;k with order p™ —1.

Thus, a?, a”z, e ,apk are distinct element, which is to say ¢(a), p?(a),--- , ¢ (a) are distinct, which

implies the Frobenius automorphism has order k. O

Given these results, we know Aut(Fo5/F5) is cyclic of order two and generated by the map
x +— 2°. Hence, PT'L(2,25) consists of PGL(2,25) and the left coset ¢ PGL(2,25). Therefore, to
produce a relative invariant, it suffices to find f € K[X] which is invariant under PGL(2,25), and
not invariant under the Frobenius automorphism.

5.3. Constructing an Invariant.

Lemma 5.19. If x is an element in the prime subfield of Fyx, then ¢(x) = . If x is an element
in Fpr \ Fp, then p(x) # x.

Proof. The first claim is exactly lemma 5.13. We saw in the proof of lemma 5.18 that 2? —x € F)[z]
has p distinct roots in IF,. If there were some x € Fp« \ I, for which p(z) = 2P = x, then 2 would
also be a root of the polynomial, contradicting that a polynomial of degree p has at most p distinct
roots. O

To understand the action of ¢ on the projective line over Faos, recall that the permutation
induced by automorphisms of Fo5 is obtained by applying the automorphism to each component of
a spanning vector.

With this in mind, we see that the subspace spanned by (z,y) is left fixed by ¢ if and only if
and y belong to the prime subfield F5. If y = 0, then y is in the prime subfield, and we can make
x = 1 belong to the subfield as well. Therefore, ¢ leaves the infinity point fixed.

For points spanned by (x,y), we can make y = 1 by multiplying the spanning vector by 1/y.
Hence, ¢ leaves projective points spanned by (), 1) fixed if and only if A lies in Fj.

Definition 5.20. Given four projective points (4, B, C, D) lying in the same projective line, with
A, B, C distinct, the cross ratio is defined as the element h(D) € P(V) where h : P(V) — P(V) is
the unique homography mapping (4, B, C) to (00,0, 1). The cross ratio is denoted [A, B; C, D].
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Lemma 5.21. The cross ratio is invariant under the projective linear group, meaning for all o in
PGL(V)
[A,B;C, D] = [0(A),0(B);0(C),a(D)].

Proof. See lemma 5.8.2 in Gallier’s “Geometric Methods and Applications” [8]. (]

Lemma 5.22. Let ¢ denote the Frobenius automorphism, and let [A, B;C, D] = X. Then
[p(A),0(B); o(C),0(D)] = @(A).

Proof. We begin by applying ¢ to each side of [A, B;C, D] = X to obtain po(D) = ¢(A) where o
is the homography representing the cross ratio. Since PGL(2,25) is normal in PT'L(2, 25), we have
o = ¢~ lrp for some T € PGL(2,25), so

po (D) = mp(D) = ¢(A).

Now we will show that 7 is the map which sends ¢(A) to oo, p(B) to 0, and ¢(C) to 1. We know
o0(A) = oo and that ¢ leaves co fixed; this implies po(A) = mp(A) = co. Repeating this argument
for B and C, we see that 7 is the unique homography taking (¢(A), p(B), ¢(C)) to (c0,0,1). O

For the remainder of the section, let us identify projective points with their corresponding el-
ements of the projectively extended line Fgg,. In light of the result above, if we choose projective
points (A, B,C, D) so that their cross ratio is A € Fa5 \ F5, then the action of the Frobenius
automorphism will send (4, B, C, D) to some 4-tuple having cross ratio not equal to A.

Hence, we can construct a relative invariant for the pair by associating each projective point A
with an indeterminate x4, and forming the sum

Z rarirdal € K[X]. (4)
[A,B;C,D]=A

That is, we sum over all four tuples such that [A, B;C, D] = X. The action of a permutation in
PGL(2,25) will send each four tuple to another with the same cross ratio, permuting the sum. On
the other hand, ¢ will send each 4-tuple to a 4-tuple having cross ratio not equal to A, meaning the
associated monomial will not be in the sum.

Now we want to show that the set of tuples having cross ratio equal to A is equal to the orbit of a
tuple (4, B, C, D) such that [A, B;C, D] = X\ under the action of PGL(2,25). To begin, we remark
that, by virtue of the cross ratio being a projective invariant, the orbit is clearly a subset the set of
tuples with cross ratio \. To show the reverse inclusion, we will count the number of elements in
each set and see that they have the same cardinality.

We know that given any projective frame (A, B,C), and any fourth point A, there is exactly 1
point D such that [A, B; C, D] = X. Hence, there are 26 - 25 - 24 = 15600 4-tuples (A, B, C, D) with
cross ratio A. On the other hand, PGL(2, 25) is sharply 3-transitive, so for a given (A4, B, C) there is
a unique element which maps (4, B, C) to every other 3-tuple. Again, there are 26-25-24 = 15600
such tuples, so the orbit of (A4, B,C) under PGL(2,25) has cardinality 15600. Finally, we remark
that D is uniquely determined by (A, B, C), so the orbit of (A, B, C, D) has the same size as the
orbit of (A4, B,C).
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Therefore, we can rewrite the special invariant (4) as a sum over the PGL(2,25)-orbit of the

monomial z z%xdx%:

Z o x (varhaba]). (5)
oc€PGL(2,25)
We remark that the cross ratio, though it does depend on the order, is actually invariant under
the action of the Klein four group Ky = {e, (AB)(CD),(AC)(BD),(AD)(BC)}. Therefore, the
action of ¢ on {A, B,C, D} must correspond to some permutation of these elements which is not
an element of Kj.

If we can construct a monomial m(z 4, g, xc,xp) which is stabilized by K4, but not by ¢, then
m will have a non-trivial stabilizer in PGL(2,25), and we can simplify (5) by summing over the
smaller orbit of m. Furthermore, if we identify the projective point [A4, B; C, D] # oo, with its
corresponding element in Fay5, the orbit of the cross ratio under the action of the symmetric group
on {A, B,C, D} is described by

1
[A,B;C,D] = A, [A,B;D,C’]:X,
1
[A,C,D,B]:ﬁ, [,{4,6‘7.8,1)]:1_)\7
A—1 A
A, D; = _ - A D: A
[ >DvB7C] )\ 9 [ aD7CaB] )\71

Therefore, if we choose A so that A = (1 — A\)~! = A71(\ — 1), then the cross ratio will be
invariant under the even permutations of {A, B,C, D}. Tt turns out that two such elements exists
in Fo5 \ F5; if we regard Fa5 as the quotient ring Fs[x]/(2% — 2) so that 22 = 2, these two elements
are 2x 4+ 3 and 3z + 3, and they are related by the fact that ¢(2x 4+ 3) = 3z + 3.

Given these symmetries, we see that, for carefully chosen A, the stabilizer of [4, B; C, D] = A will
have order 12. By choosing a monomial (or polynomial) with the same stabilizer in PGL(2, 25), we
can shrink the orbit to 15600/12 = 1300 elements, greatly simplifying the orbit sum (5).

We will discuss our efforts in this direction in the next section.

6. REsSuLTS & FUTURE WORK

6.1. Results. To simplify the notation, let G = PT'L(2,25) and H = PGL(2,25). To begin apply-
ing our algorithms, we computed the Hilbert series of the invariant algebras K[X]¢ and K[X] by
applying Molien’s formula and found that

H(K[X]St) =1+t +22 4365 +8t* +- -,

H(K[X]H,t) =14t +22 433 +9t4 -+ .
From these results, we concluded that the minimal degree of a relative invariant is four (which
agrees with the method of Fieker and Kliiners), and that the kernel of R, 4 is one-dimensional.

With our knowledge of the minimal degree of a relative invariant for the pair, we computed a
basis for K[X]¥ by applying algorithm 4.17. We then applied algorithm 4.7 (method 1) to the basis
to produce a relative invariant for our pair. The resulting invariant requires 23400 multiplications
— a few thousand more than the invariant produced by the benchmark generic method.
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With a basis of K[X]¥ computed, we applied algorithm 4.13 (method 2) to determine which
of the basis elements is a relative invariant. This procedure yielded an invariant requiring 11700
multiplications, improving upon the benchmark.

Finally, we consider the special invariant described in section 5. The order of PGL(2, 25) is 15600,
and assuming the powers of each x; are stored, we can evaluate each monomial with 3 products,
giving a total cost of 15600 - 3 = 46800 multiplications.

We summarize the results obtained from our new methods in the table below. Here “benchmark”
refers to the generic method of Fieker and Kliiners [7].

Method Degree Products
Benchmark 4 14675
Method 1 4 23400
Method 2 4 11700

Special Method 10 46800

TABLE 1. Computational Cost of Invariants.

6.2. Future Work. We introduced two new algorithmic approaches (algorithms 4.7 and 4.13)
for computing relative invariants in pairs of permutation groups. In order to evaluate them, we
would like to test our generic methods on other pairs of groups to obtain a more comprehensive
comparison to the benchmark. An analysis of the computational complexity of the algorithms (not
the invariants produced) is also desired.

In addition to this work, the new special invariant (5) we constructed in section 5 may be simpli-
fied by choosing points A, B, C, D so that their cross ratio is either 2z + 3 or 3x + 3, and choosing
a polynomial p(x 4, xp, ¢, zp) which is invariant under the even permutations of {4, B, C, D}.

A canonical polynomial with stabilizer A4 in Sy is the Vandermonde determinant, defined by
V(z1,22,23,24) = [[,;(x; — x;). We might suspect that we could form the orbit sum below to
obtain a relative invariant:

E oxV(xa,xp,xc,Tp).
ocHEPGL(2,25)/ Stab(V)

However, calculations performed in SageMath [11] suggest that this sum works out to be zero.
Since scalars are invariant under the action of the full symmetric group, the effect of the Frobenius
automorphism will leave this sum fixed, meaning it is unfortunately not a relative invariant for this
pair. We will continue to investigate this sum, and alternatives, to try to reduce the complexity of
our new special invariant.

Finally, A.-S. Elsenhans recently [4] identified a new class of polynomials which are unusually
difficult to treat with existing methods, namely, polynomials with primitive affine Galois groups.
We would like to test our algorithms on these polynomials to see if they fare any better than existing
methods.
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GLOSSARY

Definition 6.1 (Homogeneous Polynomial). A polynomial is called homogeneous if it is the sum
of monomials of the same degree.

Definition 6.2 (Linear representation). A linear representation of a group G is a group homomor-
phism from G to the linear group GL,, (K), where K is a field. The number n is called the degree
of the representation.

Definition 6.3 (Dual Space). Given a vector space V over K, the dual space V* is the vector
space of all linear maps V — K.

Definition 6.4 (Semi-Direct Product). If G is a group with subgroups N and K such that N is
normal in G, the intersection N N K is trivial, and G = NK, then we say G is the semi-direct
product of N by K, denoted G = N x K.

Definition 6.5 (Field Automorphism). Let K be a field. A map o : K — K is an automorphism
of K if it is bijective and satisfies the following for all a,b in K:

(1) a(a+b) = afa) + a(db) and,
(2) a(adb) = ala)a(d).
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Definition 6.6 (Stabilizer). Let G be a group acting a set X. The stabilizer of an element 2 € X
is the set of elements in G which leave x fixed. The stabilizer is a subgroup of G, and it is denoted
Stabg(x).
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