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Abstract

In this paper, we study clouds of n points in R?, which can be identified with matrices in RX"
modulo the action of S, by column permutation. We construct a bi-Lipschitz embedding of this
orbit space into R™ where m = O(dn?). We show that our construction is a coorbit embedding
(Definition 3.7) and provide sufficient conditions on the parameters (templates) to ensure that
this map is injective and bi-Lipschitz. Finally, we perform numerical experiments to identify
a set of parameters which yield small distortion in practice. The constructive nature, modest
embedding dimension, and small distortion of our map make it suitable for applications.
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1 Introduction and Background

1.1 Motivation

Given a Fuclidean space and a group of orthogonal transformations, we wish to embed the orbit
space into another Fuclidean space by a bi-Lipschitz map. We are motivated by the analysis of
data that resides in such an orbit space. For example:

Graphs: A graph with n vertices can be represented by its adjacency ma-
trix, an element of R™*™ but this representation is unique only up to the
relabelling of nodes, corresponding to conjugation by a permutation matrix.
We may therefore identify each graph not with an adjacency matrix, but rather
an orbit under the conjugation action of the symmetric group .S,.

Point Clouds: A point cloud is a finite, unordered collection of vectors.
A cloud of n points in R? may be represented by an element of R4*™ with
uniqueness up to a permutation of columns. Hence, point clouds are better
described as orbits under the permutation action of S,,.

In each of the examples above, data resides in a vector space V equipped with an inner product,
and as a consequence, a metric, which provides a notion of distance between vectors. However, the
natural metric is not suitable for studying data points which we naturally identify with elements
lying in the same orbit, as vectors which represent the same object may have a non-zero distance.
To correctly measure distance, we must treat the data as residing in the orbit space corresponding
to the group action. However, most existing data analysis algorithms assume that data lies in a
Euclidean space. To employ such algorithms, we wish to embed the orbit space into Euclidean
space.

We will study this question for finite groups acting on Euclidean vector spaces by orthogonal
transformations. To begin, we will define the metric quotient V/G whose points are the G-orbits of
vectors in V. We will then discuss some invariant theory based approaches and their limitations.
In Section 3, we will discuss a new class of maps, called coorbit embeddings, which enable the
construction of bi-Lipschitz embeddings in many cases. In Section 4 we construct an explicit
embedding of the orbit space of point clouds modulo column permutation into Euclidean space



which is bi-Lipschitz in the quotient metric. Finally, in Section 5, we discuss the complexity and
distortion of this embedding. The small distortion and modest embedding dimension of this map
make it suitable for a wide variety of applications with point cloud data.

1.2 Metric Quotient

When V is an inner product space, the automorphisms of V' are orthogonal transformations, and we
wish to consider linear representations to the orthogonal group O(V'). We say that a group G acts
orthogonally on V if the action is given by a representation p : G — O(V). The inner product
on V induces a norm [|v]| = \/{v,v), and a metric dy (u,v) = ||v — u|| on the space. Orthogonal
transformations are isometries with respect to this metric:

||Tv — Tul|?> = (Tv — Tu, Tv — Tu) = (v —u,v —u) = ||v —u||%.

Hence, when G acts orthogonally, it acts by isometries. In this situation, we define the orbit space
V/G to be the set of orbits V/G = {G -v: v € V}. We equip V/G with the metric

dy/c:V/GxV/G =R, dyq(G-v,G-u)=min{dy(g-v,h-u):g,hecG}.
Since G acts by isometries, we have dy (g-v, h-u) = dy (v, g~ h-u) = dy(h~g-v,u) and consequently,

dvc(G-v,G-u) = grggdv(v,g ) = inelgdv(v,h ).

Lemma 1.1. When G < O(d) is a finite subgroup acting orthogonally on V = R?, the orbit space
V/G is a metric space with respect to dy¢.

Proof. Let u,v,w € V. It is clear that dy,g(G - v,G -v) = 0, and that dy,¢(G -v,G - u) > 0
when G - v # G - u. We have already verified that this map is symmetric, so all that remains is the
triangle inequality. Let g,h be the elements of G such that dy/q(G - u,G -v) = dy(u,g - v) and
dy;c(G-v,G-w) =dy(v,h-w). We know dy/q(G - u,G - w) < dy(u,gh - w), and we have

dy (u, gh - w) < dy(u,g-v)+dy(g-v,gh -w)=dy(u,g-v)+dy(v,h-w).

This right hand side is simply dy/q(G - u, G - v) + dy;(G - v, G - w) so we are done. O

1.3 Bi-Lipschitz Embeddings

We are interested in embedding the orbit space into some other metric space by a map which
preserves the structure given by the quotient metric, namely, the distance between orbits. We
formalize this notion with the next definition.

A map f: X — Y between metric spaces (X,dx) and (Y,dy) is bi-Lipschitz if it is both
Lipschitz and lower Lipschitz. More concretely, f is bi-Lipschitz if there exist positive constants
a, [ € R such that

a-dx(z1,22) < dy(f(21), f(22)) < B dx (21, 72) (1)

for all z1, 9 € X. We call a the lower Lipschitz constant, and 8 the (upper) Lipschitz constant.
Notice that the existence of a positive lower Lipschitz constant implies that f is injective: if there



is a non-zero « satisfying the above then f(x1) = f(22) implies a - dx (21, z2) = 0, and since a # 0,
we must have x1 = x5. If f is bi-Lipschitz, we define the distortion of f by

dist(f) = inf {i s, [ osatisfy (1)} .

The distortion serves as a means of quantifying the quality of the embedding. As such, we wish to
minimize it to the optimal case where o = 8 and consequently, dist(f) = 1. When the distortion is
1, embedding f preserves the structure of the quotient metric.

Fix a natural number m. If f: V — R™ is constant on G-orbits in V, then f factors through
f+:V/G — R™ defined by G - v+ f(v), meaning f = f+ o where 7 : V — V/G is the projection
v = G -v. We follow [4] and reserve this notation to denote the factor map on the metric quotient
induced by a G-invariant map. We summarize the situation with the commutative diagram below.

v—1 L gm

V/G

If V=R? and G < O(d) is a finite subgroup, then results from [5] and [1] guarantee the
existence of a bi-Lipschitz embedding of the orbit space V/G into R™. However, relatively little is
known about how to construct these embeddings. This invites the following question:

Question 1.1. Given a finite group G acting orthogonally on a Euclidean vector space V', can we
construct a G-invariant map f: V — R™ so that f+:V/G — R™ is bi-Lipschitz?

Question 1.1 will be the central focus of this paper, and we will answer it explicitly in Section 4
for a specific group action by constructing a bi-Lipschitz embedding of the orbit space of point
clouds (matrices modulo column permutation) into R™.

2 Invariant Theory

Given a group acting on a real vector space V by linear representation p : G — GL(V'), we define
the dual representation p* : G — GL(V*) by p*(g)l = Lo p(g~!) for a linear function [ in the
dual space. This definition respects the natural pairing (-,) : V* x V — K given by (l,v) = I(v) so
that (p*(g)l, p(g)v) = (l,v) for all ] € V* and v € V. The action of G on V* induced by the dual
representation is g - [ = [ o p(g~!), which has the effect (g-1)(v) =1(g~'-v) for v e V.

We may regard R[zq, - - - ,x,], the ring of polynomials in n indeterminates with real coeflicients,
as a ring of functions on V' = R™ by substituting the indeterminates for a basis of V*. We use the
notation R[V] to denote this ring of polynomial functions. The action of G on V* induces an action
on R[V] by g- f= fop(g™t) for f € R[V]. In essence we have, (g- f)(v) = f(g~! v) forve V.

Invariant theory is the study of polynomials f € R[V] which remain invariant under this group
action, i.e. those f € R[V] for which g - f = f for all g € G. The set of invariant polynomials (also
referred to as invariants) forms a subring of R[V] which is denoted R[V]“. When G is finite, a result
due to Emmy Noether states that the the invariant ring is finitely generated as an algebra over R



(see Proposition 3.0.6 in [6]). Moreover, for finite groups, there exist algorithms for computing a
generating set (see for example [6, Chapter 3]).

2.1 Separating Sets

Definition 2.1. Let G be a finite group acting linearly on V' = R%. A subset S C R[V]% is called
separating if for any two vectors u,v € V, we have G - v # G - u implies that there exists f € S

such that f(v) # f(u).

Separating sets (for finite group actions) may be equivalently characterized by saying that
S C R[V]¢ is separating if, for all u,v € V,

G v=G-u <+ f(v)=f(u) Vfes.

The left implication follows immediately from the definition, and the converse follows from the fact
that f € S is G-invariant. This property makes our interest in separating sets clear: if S C R[V]%
is a separating set, then defining

¢:VoREL g0)=(f(v): fES)

induces a map ¢* : V/G — RIS which is injective. We call a map which is injective on the orbit
space separating, and we say that it separates G-orbits in V. In summary, every separating set
defines an embedding V/G to Euclidean space which is given component-wise by the members of
the set. We will use this property in Algorithm 2.1 to construct a separating embedding of the
orbit space.

Proposition 2.1. If S C R[V|% is a finite generating set, then S is also a separating set.

Proof. Take u,v € V with distinct orbits, and let v; denote the ith component of v. Let e1,--- ,eq4
be the standard basis for V, and x1,--- , x4 the dual basis. Define the polynomial

d
Dy = H <Z(vZ —0- x1)2> e R[V]€.

ceG \i=1

Evaluating p, at some w € V, we have p,(w) =[], |lv — o' - w|[?, and consequently p,(w) = 0
exactly when v and w lie in the same orbit. Certainly p,(v) is zero, and p, is G-invariant, so if
S={f1,"-+, fm}, then we may write p, as the finite sum

Do :anff‘1~-~ m  where o € N¥.
(6%

If f1,---, fa all agree at u and v, then we must have p,(v) = p,(u) = 0, implying that G-u=G-v
and contradicting our assumption. Therefore, we conclude there must be some f € S for which
f(u) # f(v), making S a separating set. O

This discussion leads to the following algorithm for constructing embeddings of V/G to R™.
Calling this procedure an algorithm is justified by the existence of algorithms for computing a
generating set in the cases we consider.

Algorithm 2.1. Given a finite group G < O(d) acting orthogonally on V = R compute a
generating set S = {f1,---, fm} and take ¢ : V — R™ to be map ¢(v) = (f1(v), -+, fm(v)). Then
¢* : V/G — R™ is injective.



2.2 Differentiability

In the last subsection, we described an algorithm which constructs an embedding V/G — R™ when
V = R% and G < O(d) is finite. Unfortunately, the maps obtained in this way will rarely be bi-
Lipschitz. In fact, in many cases the bi-Lipschitz condition requires that a factor map f* is induced
by a non-differentiable invariant f: V — R™.

Let G be a finite group acting orthogonally on V' = R%, and suppose f : V — R™ is G-invariant.
We say a map f : V — W between Euclidean spaces is differentiable at a point x € V if the
Jacobian (matrix) of f exists at x. In essence, f is differentiable at x if all its first order partial
derivatives exist at x.

Theorem 2.1 (Theorem 21 in [4]). If x € V is fized by some non-identity element of G and f is
differentiable at z, then f+:V/G — R™ is not lower Lipschitz.

As a result, maps given component wise by elements of R[V]% cannot yield a lower Lipschitz
embedding unless the action of G on V is free. The requirement that G act freely on V' is quite
restrictive, so we desire invariants which are not differentiable everywhere, and therefore might be
used to induce a bi-Lipschitz embedding of the orbit space. This is a notable departure from classical
invariant theory, which focuses primarily on the algebraic structure of polynomial invariants.

3 Coorbit Embedding

3.1 Max Filtering

In the previous section, we concluded that polynomial invariants fail to yield bi-Lipschitz embed-
dings of the orbit space since they are differentiable everywhere, and in particular, at fixed points
of the group action. Therefore, we desire an alternative family of invariants which are not differen-
tiable at any points fixed by any element in the group. One such family of maps, called max filters,
was introduced in [5] in which it was shown that there exist separating invariants constructed from
max filters for all finite subgroups of the orthogonal group. In this subsection we will describe
the max filter bank (Definition 3.3) and discuss its efficacy as a theoretical and practical tool for
constructing bi-Lipschitz embeddings of orbit spaces.

Definition 3.1 (Definition 1 in [5]). Given a real inner product space V and a group of linear
isometries G, the max filtering map ((-,-)) : V/G x V/G — R is defined by

(G-2,G-y)):== sup (p,q).

peG-z,qeG-y

We are interested in finite groups, so we may replace the supremum with a maximum. Addi-
tionally, we assume G acts orthogonally on V', so this definition can be simplified to

(G- 2,G y) =max{o - 2,y) = max(z,0 - y).
Definition 3.2 (Definition 3 in [5]). Given a template z € V, we refer to ((G- z,-)) : V/G - R
as the corresponding max filter.

The max filter is a map V/G — R which is parameterized by a vector z € V; we follow [5] in
referring to these parameters as “templates”.



Definition 3.3 (Definition 3 in [5]). Given a (possibly infinite) sequence {z;};cr of templates in
V, the corresponding max filter bank is ® : V/G — R defined by ®(G-z) = {({G - 2;, G- ) }ie1-

We would like to construct a injective max filter bank ® : V/G — R™ which embeds the orbit
space into a low dimensional space (i.e. we desire m to be small) and may be evaluated efficiently.
It turns out that for V' = R¢ and finite G < O(d), there exists a finite collection of templates which
yield an injective max filter bank.

Definition 3.4. We define the semi-algebraic sets of R? as the smallest family of sets in R? which
contain the algebraic sets {x € R? : p(z) = 0} and sets of the form {z € R? : g(x) > 0} for
p,q € Rlzy,---,24], and is closed under complementation, finite unions, and finite intersections.
Cf. [3, Section 2.3].

Definition 3.5. A semi-algebraic homeomorphism f : S — T between semi-algebraic sets S and
T is a homeomorphism whose graph {(z, f(x)) : z € S} C S x T is a semi-algebraic set.

Every semi-algebraic set S C R? may be decomposed into the disjoint union of finitely many
semi-algebraic sets, each of which is semi-algebraically homeomorphic to the hyper-cube (0,1) C R¢
for some i < d (with the convention that (0,1)° is a point) [3, Theorem 5.19]. The dimension of
semi-algebraic set S is the largest ¢ which appears in this decomposition [3, Propositions 5.27, 5.28].

Theorem 3.1 (Corollary 13 in [5]). Consider any finite subgroup G < O(d). For generic templates
21, 5 zm € RY, the maz filter bank x — {{(G - z;, G - z))}, separates G-orbits in R? provided
m > 2d.

Theorem 3.1 guarantees the existence of a separating max filter bank, but it does not suggest
a way to select templates so that the associated max filter bank is separating. The proof of this
theorem demonstrates that the subset Z C (R%)" where a collection of templates fails to separate
G-orbits is semi-algebraic of dimension at most dn—1, but in practice, this set is difficult to describe.

Let S9= 1 = {v € R? : ||v|| = 1} be the unit (d — 1)-sphere in R and let Unif(S?~!) be the
uniform distribution on the unit (d — 1)-sphere.

Theorem 3.2 (Theorem 18 in [5]). Fiz a finite group G < O(d) of order N and select m at least
12N?dlog (2 + 1) where

1/2
5= T 1
’ (128N4 2d+3log(4N2)> '

Draw independent random vectors z1, - - - , 2y ~ Unif(S9=1). With probability at least lfefm/(uNz),
the mazx filter bank ® : RY/G — R™ with templates {z;}™, has lower Lipschitz bound & and upper
Lipschitz bound m*/?.

We may summarize this result by stating that sufficiently many templates, drawn at random
from the unit sphere, yield a bi-Lipschitz embedding of the orbit space with positive probability.
This provides a method to construct the bi-Lipschitz maps of interest, but this approach is limited
by the dimension of the co-domain as well as the computational complexity, both of which grow
with the order of the group.

If we fix d and regard the number of templates, m, required to apply the theorem above as a
function of the group order, we can show that m grows faster than N2 since the logarithmic term
is increasing in N. Moreover, log(2/6 + 1) > 1 for d and N at least 1 (which is always the case),



so it follows that m > N2. This makes the above result somewhat impractical for groups of large
order. For example, consider the orbit space of point clouds (that is R¥*™ modulo the action of S,
by column permutation). In this case, the embedding dimension must be larger than (n!)?, which
is untenable particularly for applications involving point cloud data.

3.2 Coorbit Embedding

The authors of [1] generalize the max filter map by taking subsets of the sorted list of inner products
rather than just the largest, as in the max filter map. Importantly, these generalized maps, called
coorbit embeddings, are necessarily bi-Lipschitz when they are separating. For a natural number
n, let [n] denote the set {1,2,3,--- ,n}.

Definition 3.6. Let sort : R* — R? be the operator that sorts a vector’s components in non-
increasing order. In other words, sort returns a vector with the same components as its input so
that the output, call it v = (vq,- -+ ,vq), satisfies v1 > -+ > vq.

Let G be a finite group of order N acting orthogonally on V = R?. Fix a natural number k,
and let w = (wy,- -+ ,wy,) belong to V. For i € [k] and j € [N], let &;; : V — R be the map which
sends x € V to the jth coordinate of the vector

sort({z,o-w;) : 0 € G).
Fix an index set S C [N] x [k]. For i € [k], let S; be the set S; = {j € [N] : (j,i) € S}, and define
&V oRIEL v (g;(0) 5 € S).
Definition 3.7. The coorbit embedding associated to w € V¥ and S C [N] x [k] is the map

fws: V=RED v (g0), &)

Theorem 3.3 (Theorem 2.1 in [1]). Let G be a finite subgroup of O(d) with |G| = N. Fiz w € V*
and S C [N] x [k]. If the coorbit embedding fi’u,s :V/G = RIS is injective, then it is bi-Lipschitz.

As a consequence, we see that the max filter bank, which can be obtained as a coorbit embedding
by taking S = {1} x [k], is necessarily bi-Lipschitz when it is injective. Hence, we can revisit
Theorem 3.1, which states that m = 2d generic templates separate orbits, and conclude that for
finite groups G < O(d) acting orthogonally on R? there exists a collection of m = 2d templates in
R? for which the associated max filter bank is a bi-Lipschitz embedding of the orbit space R?/G
into R™.

4 Quotients by Column Permutation

4.1 A Point Cloud Embedding

The results from Section 3 demonstrate that bi-Lipschitz coorbit embeddings exist for all finite
groups acting orthogonally on R?, but they do not suggest a practical way to construct these maps.
In this section, we will investigate the action of S, on V = R¥*" by column permutation and
construct an explicit bi-Lipschitz embedding of the orbit space V/S, into a Euclidean space of
dimension O(dn?).



Let p : S, — O(n) be the defining representation of S, and define o - M = Mp(o)T. Tt is
easy to verify that this action is an orthogonal transformation of V' 22 R, so there exists a bi-
Lipschitz embedding of the orbit space into R2%" by Theorem 3.1 and Theorem 3.3. For matrices
M = [my, - ,my] € R" the action of S, has the effect of permuting columns according to

g [mlv"' amn] = [mafl(l)a"' 7m0'*1(n)j| .

We would like to construct a bi-Lipschitz embedding of V/S,, to a Euclidean space of small dimen-
sion. To do so, we will construct a coorbit embedding and find explicit templates which make this
map injective.

Definition 4.1. Given z € R?, define ¢, : V — R" by ¢.(M) = sort(MTz). For a finite collection
z={z, - ,2z} CR? define &, : V — RF" by

(I)z(M> = <¢z1<M)7 T 7¢Zk(M))

Each component of &, is constant on S,,-orbits, and therefore, ®, induces a well defined map
@Jz’ : V/S,, — R¥*. We will now show that ®, is an instance of coorbit embedding. To begin, for

each z € z let 2/ = [2,0,---,0] € V be the matrix which has the vector z as its first and only
non-zero column. Notice that, for M = [my,--- ,m,] € V, we have (M, 2') = tr(MTz) = (my, 2).
Proposition 4.1. Take w = (21, ,2}) € V¥, and let S = {(n —1),,2(n—1)!,--- ,n!} x [k]. The

coorbit embedding &,y 5 is equal to .

Proof. Both maps are given by the concatenation of k£ smaller functions; for ®, these are the
functions ¢,, for z; € z, and for £, g the component functions are & for 1 < i < k. Hence, it
suffices to show that ¢,, = &;. Let M = [my,--- ,my,] belong to V', and observe that

§Ei(M) = (& (n—1)1 (M), & o(n—1y1 (M), -+ ;& 1 (M)).

Recall &; ;j(M) is the jth component of the sorted vector sort((M,o - 2}) : ¢ € S,) which is
equivalent to sort({(my(1), ;) : ¢ € Sy,). Since the letter 1 has a stabilizer isomorphic to S, 1, each

value (m;, z;) for 1 < j < n will appear (n — 1)! times in the sorted vector. Therefore, by taking
S;={(n—-1)L2(n—1)!,--- ,n!l}, we find

§i(M) = sort({me(1y, zi) : oH € Sy, /H) = sort({mj,z;) : 1 < j <n).

where H = S,,_; is the stabilizer of 1 in S,,. The right-most vector is simply ¢, (V) = sort(M7 z;),
so we conclude &, 5 = ®. O

Corollary 4.1. If z C R? is a finite collection of templates such that <I>ﬁ 18 injective on the orbit
space, then @ﬁ 1s bi-Lipschitz.

This invites the question, how can we choose z C R? so that <I>ﬁ is injective? To investigate, let
M and W belong to V, and let m; denote the jth column of M. Let eq,---,eq be the standard

basis for R?, and z1, - -- , x4 the dual basis. Associate to each column m; the linear form
d
mj = Zmijxi € Rlzq, -, x4]
i=1



Notice that, for v € R?%, we have mj(v) = (m;,v). Now, to each matrix M € V, associate the
polynomial

Py = H (t—mj}) € Rl -, z4][t] (2)

Lemma 4.1. Two matrices in V have the same associated polynomial if and only if they lie in the
same S, -orbit.

Proof. Let M,W € V. The polynomial ring R[xy,- - ,24][t] is a unique factorization domain, and
each term in the product is irreducible so Py; = Py exactly when there is permutation o € S, so
that m7 = w;(j for all 1 < j < n. This equality implies m; = wq(;), so we have M = o~1.W. The
converse follows immediately from the fact that multiplication is commutative in the polynomial
ring Rlzq, -, z4][t]. O

Let e; denote the jth elementary symmetric polynomial in n indeterminates, and observe that
the polynomial Pj; expands as

Py =t"—ey (mf, - ,mi)t" o (=1) e, (M}, ,m). (3)
Hence, two matrices M and W in V lie in the same S,-orbit if and only if

ej(mi, - ,my)=e¢; (wi,---,w,) foralll<j<mn. (4)

The polynomials appearing in (4) are homogeneous of degree j, so they belong to the homogeneous

piece R[zq, -, z4] (j)» Which is a real vector space of dimension (jjgf;l).
Definition 4.2. A set of points X C R? is unisolvent for a vector space F' C Rlxy,--- , x4 if the

zero polynomial is the only polynomial which vanishes at every point in X.

If a set of points is unisolvent for ' C R[zy, -+ , x4, then any two polynomials in F' which agree
at all of these points must be identical (because their difference is the zero polynomial). Hence,
solutions to the Lagrange interpolation problem are unique in F (see Chapter 2 in [10] for more
information). This explains the etymology of “unisolvent”.

Lemma 4.2. If z C R? is unisolvent for F; = Rzq,- -+ ,z4)(j) for all j € [n], then ®} is injective.

Proof. Tt suffices to show that ®,(M) = &,(W) implies S, - M =S, - W. If &,(M) = ®,(W) then
¢z, (M) = ¢, (W) for all 1 <i < k. Since mj(2;) = (my, ), it follows that

(t =mj(z) = ][ (t = wj(z)) € RI]

j=1 j=1
which implies

ej(my, - ,my)(z) =ej(wl, - ,wp)(z) foralll<j<n.
The polynomials e;(m7,--- ,m}) and e;(w],--- ,w};) belong to Fj, so by the assumption that z is

unisolvent, the above implies
ej(mi, - ,my) =e;(wl, - ,w,) foralll<j<n.

Consequently, Py; = Py and we conclude that M and W lie in the same orbit. O

10



Given a basis {u,--- ,un} for a vector space F' C R[xy,- - ,x4], we can determine whether a

set of points z1,- - - , 2z, € R? is unisolvent by looking at the kernel of the matrix
uy(z1) un(z1)
uy(22) un (z2)
ui(ze) - un(zk)

The set is unisolvent exactly when this matrix has a trivial kernel. From this perspective, it is clear
that we must choose a set points in R? so that the matrix has rank N, and therefore, we must
choose k > N. Of course, this is not a sufficient condition, but it places a lower bound on k£ which
makes our results in the next two subsections optimal.

4.2 The 2-Dimensional Case

To determine when z is unisolvent, we start by focusing on the case d = 2. A homogeneous
polynomial f € R[z1,x2](,) of degree n satisfies f(Av) = A" f(v), so we may regard the zeros of f
as points on the real projective line

P! = (R?\ {0})/ ~ ,where z ~y <= z = \y for some A € R\ {0}.

We use the notation [v; : va] € P! to denote the equivalence class [v] for a vector v = (v1,v2) € R?.
Every point in P!, spare the horizontal subspace, has a canonical representative of the form [3: 1].
The horizontal subspace has representative [1 : 0], and we call this point co. We call a projective
point [v; : v3] € P! a root of f if f(vy,ve) = 0.

Lemma 4.3. A non-zero homogeneous polynomial f € Rz, x2](,) of degree n can have at most n
distinct projective roots.

Proof. A typical f € R[z,y] can be written f = a,2™ + ap_12" Ly + - + a12y" ! + apy™ where
some of the coefficients may be zero. If f has a projective root at [3: 1] € P!, then

f(B,1) =anB" +an_18"" 4+ a1 +ag =0

meaning [ is a root of the univariate polynomial f(z,1). Hence, f may have at most n finite
projective roots. If f has a root at oo, then f(1,0) = a,, = 0. Therefore, f(z,1) is univariate of
degree at most n — 1, and it follows that f may have at most n — 1 additional roots in P*. O

Corollary 4.2. Any collection of n + 1 vectors in R? corresponding to distinct projective points is
unisolvent for the homogeneous piece Rz, x2](;) for all 1 < j <n.

The top elementary symmetric function is homogeneous of degree n, so we make take z to be
any collection of n + 1 points in R2, none of which lie on the same line through the origin, and
conclude that CIDﬁ is injective by Lemma 4.2. In summary, we have proven the following theorem:

Theorem 4.1. Let V =R?*". If z C R? is a collection of n + 1 vectors, none of which lie on the
same line through the origin, then @ﬁ :V/S, — R™"+1) s bi-Lipschitz.
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4.3 The d-Dimensional Case

To generalize this result beyond the case d = 2, we will transform the coefficients appearing in (3)
to homogeneous bivariate polynomials of larger degree, and show that equality of these transformed
coefficients implies that matrices M and W lie in the same S,, orbit. To begin, define

d—1\"? d—k
Wi 1= ( i ) Ty _1x’§ ER[th](d—l)-

We obtain a ring homomorphism 7 : Rlz1, -+ ,24] = R[z1, 22] by substituting z; = w;_1.

Lemma 4.4. Let vy,--- ,v, € R Any set of n(d — 1) + 1 vectors in R, none of which lie on the
same line through the origin, is unisolvent for the polynomials n(e; (vi,--- ,vk)) for 1 <j <n.

Proof. Notice that n(e; (vf,---,v})) is bivariate and homogeneous of degree j(d — 1) for all j € N.

e n

Hence, the result follows from Corollary 4.2. 0

Let M = [mq, -+ ,my] and W = [wq, -+ ,w,] belong to V. If we take z1,---,2; to be a
collection of k = n(d — 1) + 1 vectors in R? satisfying the hypothesis of the above lemma, then for
all 1 < 7 <n we have

n(ej(m; ceymy))(2) = n(ej(wfv cwy))(zi) foralll<i<k
= nle;(mi,---,my)) =nle;(wi, -, wy)).
Since 7 is a ring homomorphism, n(e;(m73,--- ,mk)) = e;j(n(m7),--- ,n(m})), so invoking the iden-

tity (3) again, we have
H (t- n(m;)) = H (t— n(w;‘)) € Rlzq, z2][t].
j=1 =1

Since R[z1, z2][t] is a unique factorization domain, this implies that there is some o € S, such that

n(mj) = imiﬂ?(ﬂ?i) = iwijn(ﬂfi) =1 (w:;(j)) :
i=1 i=1

The image of z1,--- , x4 under 7 is linearly independent, so it follows that m; = we(;), and conse-
quently, we have M = o~!-W. In summary, taking z1,-- - , 2 to be a collection of k = n(d—1)+1
vectors in R? which define distinct projective points,
nlej(mi, - ,mp))(z) =nlej(wy, - ,w;))(z) foralll<j<n, and1<i<k
implies that M and W lie in the same S,-orbit. Evaluating n(e;(mj,---,m},)) at z; is equivalent
to evaluating e;(m}, - ,m}) at ¥(z;) where ¢ : R — R? is given by
d—1 1/2 o
(v1,v2) = (wo, "+ ,wa-1), Wk = < i > v TE g,

Hence, we may take z = {1(21),--- ,%(2x)} and find that ®, : V/S, — R*" is bi-Lipschitz. In
conclusion, we have proven our central result:
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Theorem 4.2. Let z1,- -+, 21 be a collection of k = n(d — 1) + 1 vectors in R?, no two of which lie
on the same line through the origin. Take z = (V(2;))1<i<k, then Ot V/S, — R is bi-Lipschitz.

Remark 4.1. The coefficients on w;, were chosen so that 1 sends vectors on the unit circle in R? to
vectors on the unit (d — 1)-sphere in R?. Observe that, for v € R?, applying the binomial theorem

yields
d—1

d—1 ke
2 2(d—k-1) 2k 2 2\d—1 2(d—1
ol = 3 (4 )R e = oyt = .

k=0
In many cases, the Lipschitz constants depend on the norm of the templates selected; to make
analysis of these constants simpler, we would like to choose templates on the unit (d — 1)-sphere.
Additionally, in order to make general statements about the distortion of our map, we desire that
the norm of our templates does not change as d does.

5 Discussion

In the previous section, we constructed an explicit embedding of the orbit space of point clouds into
Euclidean space, and gave sufficient conditions on the templates to ensure that our map is injective
and bi-Lipschitz. In this section we will analyze our construction, beginning with the embedding
dimension and computational complexity, and concluding with a discussion of distortion. The
results of our analysis suggest that @, is well suited for applications with point cloud data.

5.1 Complexity

For applications involving point cloud data, we would like the embedding dimension (i.e. the
dimension of the co-domain as an R-vector space) to be small. In addition, we must be able
evaluate our map efficiently, ideally in polynomial time or better.

Recall that our map requires k = n(d — 1) + 1 templates, and embeds the orbit space into R*™.
Therefore, the embedding dimension is m = n?(d—1) +n = O(dn?). Compare this to the max filter
bank obtained by selecting random templates (see Theorem 3.2) where the embedding dimension
must be at least (n!)2.

We will now analyze the time complexity of ®, for constant d. For M € R®" the product
MT 2 may be computed in linear time. The complexity of the component map ¢, for some template
z is therefore dominated by the sorting step, which can be performed in O(nlogn) time. It follows
that the time complexity of ®, is kO(nlogn) = O(n?logn) when d is constant.

5.2 Distortion

We now turn our attention to investigating the distortion of our embedding. In particular, we would
like to answer the following question:

Question 5.1. How can we choose a collection z C R? of k = n(d — 1) + 1 templates in order to
achieve small distortion?

To investigate, we performed some numerical experiments. Previous discussion in Section 4
suggests that we may select z to be any collection of k vectors in R? such that no two lie on the
same line through the origin. This sufficient condition leaves a great deal of choice, so we would
like to compare different methods of selecting templates.
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Method 5.1. The first method we consider is choosing k equally spaced vectors from the up-
per half of the unit circle. More precisely, let R € R2*2 be the matrix which rotates vectors
counterclockwise through 7/k, and let z; = e; be the first standard basis vector in R2. Select
z = {ROZthZl, s ,Rkilzl}.

Intuition suggests that this choice will yield small distortion, but to evaluate z, we perform
the following experiment: Let N;(0,I) be the standard ¢-variate normal distribution, and let x ~
Ny, (0,1) be a random variable representing a matrix in R¥*™. Draw r = 100 samples from z, say

1, -+ , %, and compute the (120) = 4950 distinct pairwise distances in both the orbit space and
the target space. With this data, compute the realized distortion, which we define by
B || (i) — Po(x;)]] || (2i) — Po(x;)]]

, and @ := min

i#£] dV/G(G . SCZ',G . .’Ej) '

dist*(®,) = —, with §* :=
8 ( Z) 04*7 W ﬁ I?;?]X dv/G(G'(Ei,G'ifj)

We start with V' = R?*3 and perform the experiment with z selected according to Method 5.1.
In this case, we attain a realized distortion dist*(®,) ~ 1.66. We visualize the results of this
experiment below in Figure 1.

Realized distortion: 1.66

81 - 1.4
."‘é‘
74 a5 1.2 4
6,
— — | L0
S 5 | S >‘ e
e &1 o8
I a I|x
= > o061
e 3 88
— —|T
0.4 1
2_
1. 0.2 1
0 . . ‘ . . 0.0 . . . . ;
0 1 2 3 4 5 0 1 2 3 4 5
dyic(Gx,Gy) dyc(G-Xx,G"y)

Figure 1: Distortion attained with templates selected by Method 5.1.
For many applications, we may be satisfied with distortion less than 2, so this first method
seems promising. However, we desire a benchmark to which we can compare this result.

Method 5.2. We select templates at random from Ny (0, I) while verifying that no two of these
templates lie on the same line through the origin.

Performing the same experiment as described above (again with V = R2*3), Method 5.2 yields
a realized distortion of dist™(®,) ~ 6.83. We visualize the results of this method below in Figure 2.
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Realized distortion: 6.83

14 . 2.5
12 -
2.0 -
:10_ ==
S Sk
& 8- 89 127
I His
X 6] x|
5 HERS
= =T
4_
0.5 -
2,
0 0.0 ‘ . . ‘ .
0 0 1 2 3 4 5

dwg(G X, G- y)

Figure 2: Distortion attained with templates selected by Method 5.2.

6 Conclusion

In Section 4, we constructed an explicit coorbit embedding R?*"/S,, — R™ where m = O(dn?), and
provided sufficient conditions on the templates to ensure that this map is injective and bi-Lipschitz.
In Section 5, we described a method of choosing templates which yields small distortion in practice;
when coupled with the small embedding dimension, and modest computational complexity of our
map, this makes our construction suitable for applications with point cloud data.

To continue this investigation, we would like to find upper and lower Lipschitz constants for the
map <I>ﬁ7 which would provide a theoretical upper bound on the distortion. Recent developments
in the theory of coorbit embedding, namely [8], may assist in this analysis. In addition, it would
be useful to study the behavior of the distortion (realized or otherwise) as n and d vary. We are
currently studying this question through numerical experiments like those described in Section 5.

Finally, we would like to generalize this construction to other group actions, and we are in the
process of investigating this possibility. Progress will likely factor through an associated polynomial
(as in Equation 2) whose coefficients separate orbits for the action of interest. We may be able to
employ [6, Theorem 3.9.13] to construct such polynomials for arbitrary finite group actions.
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